Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Virology ; 585: 109-116, 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20239253

ABSTRACT

Reverse genetics systems are critical tools in combating emerging viruses which enable a better understanding of the genetic mechanisms by which viruses cause disease. Traditional cloning approaches using bacteria are fraught with difficulties due to the bacterial toxicity of many viral sequences, resulting in unwanted mutations within the viral genome. Here, we describe a novel in vitro workflow that leverages gene synthesis and replication cycle reaction to produce a supercoiled infectious clone plasmid that is easy to distribute and manipulate. We developed two infectious clones as proof of concept: a low passage dengue virus serotype 2 isolate (PUO-218) and the USA-WA1/2020 strain of SARS-CoV-2, which replicated similarly to their respective parental viruses. Furthermore, we generated a medically relevant mutant of SARS-CoV-2, Spike D614G. Results indicate that our workflow is a viable method to generate and manipulate infectious clones for viruses that are notoriously difficult for traditional bacterial-based cloning methods.

2.
Drug Delivery System ; 37(5), 2022.
Article in Japanese | ProQuest Central | ID: covidwho-2317055

ABSTRACT

The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Alternate :抄録人類の歴史は感染症との戦いであり、致死性の高いウイルス感染症が幾度となく出現し、日本でも奈良時代に天然痘により当時の日本の人口の4分の1が失われた。近代に入ると有効なワクチンや薬剤が開発され、20世紀中には地球上から感染症を根絶できると誰もが楽観視していたが、エイズ、インフルエンザ、SARS、MERS等の感染症が出現し、特に、2019年の暮れに中国武漢で発生した新型コロナウイルスのパンデミックは猖獗を極め、現代社会がいかに感染症に対して無力であるかを思い知らされた。さらに、グローバリゼーションや自然破壊等の人的要因によって感染症は大きく変容している。本稿では、これまでに人類が経験した感染症を概説し、新型コロナウイルスとの戦い、そして今後の感染症対策について解説したい。

3.
Topics in Antiviral Medicine ; 31(2):44, 2023.
Article in English | EMBASE | ID: covidwho-2313173

ABSTRACT

Background: Five variants of concern (VOCs) have dominated COVID-19 disease etiology since 2020-Alpha, Beta, Gamma, Delta, and Omicron-possessing over 150 defining genomic alterations. Here, we used global proteomic and genomic approaches to study the host responses and selective forces driving VOC evolution. Method(s): We infected Calu-3 human lung epithelial cells with 5 VOCs and 2 wave 1 (W1) controls and performed mass spectrometry abundance proteomics, phosphoproteomics, and mRNA sequencing at 10 and 24 hours post infection. We additionally performed affinity purification mass spectrometry (APMS) by individually expressing all VOC mutant viral proteins (52) and corresponding W1 forms in human cells to quantify differential virus-host protein-protein interactions. Data was integrated using network modeling and bioinformatics to pinpoint VOC-specific differences. Four novel mutant viruses were developed using reverse genetics technology to validate the impact of specific genomic alterations. Result(s): We discovered VOCs evolved convergent molecular strategies to remodel the host response by modulating viral RNA and protein levels (most notably of N, Orf9b, and Orf6), altering nucleocapsid phosphorylation, and rewiring virus-host protein complexes. Integrative systems analyses revealed that Alpha, Beta, Gamma, and Delta ultimately converged in the suppression of interferon stimulated genes (ISGs) relative to W1 viruses, but Omicron BA.1 did not, and Delta induced more pro-inflammatory genes compared to other VOCs. Altered regulation of ISGs correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b;for example, Omicron BA.1 depicted a 2-fold decrease in Orf6 expression. We identified mutations that alter expression of Orf9b (N D3L and N -3A del) and the novel VOC protein N* (N R203K/G204R), and confirmed Orf6 innate immune antagonism using recombinant virus technology. Remarkably, Omicron BA.4 and BA.5 regained strengthened innate immune antagonism compared to BA.1, which again correlated with enhanced Orf6 expression, though dampened in BA.4 by a mutation (D61L) that we discovered disrupts the Orf6-nuclear pore interaction. Conclusion(s): Collectively, our findings suggest SARS-CoV-2 convergent evolution overcomes human innate immune barriers, laying the groundwork to understand future coronavirus evolution associated with immune escape and enhanced human-to-human transmission.

4.
Virol J ; 20(1): 63, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2298952

ABSTRACT

BACKGROUND: Reverse genetics systems have been crucial for studying specific viral genes and their relevance in the virus lifecycle, and become important tools for the rational attenuation of viruses and thereby for vaccine design. Recent rapid progress has been made in the establishment of reverse genetics systems for functional analysis of SARS-CoV-2, a coronavirus that causes the ongoing COVID-19 pandemic that has resulted in detrimental public health and economic burden. Among the different reverse genetics approaches, circular polymerase extension reaction (CPER) has become one of the leading methodologies to generate recombinant SARS-CoV-2 infectious clones. Although CPER has greatly facilitated SARS-CoV-2 analysis, it still has certain intrinsic limitations that impede the efficiency and robustness of virus rescue. RESULTS: We developed an optimized CPER methodology which, through the use of a modified linker plasmid and by performing DNA nick ligation and direct transfection of permissive cells, overcomes certain intrinsic limitations of the 'traditional' CPER approaches for SARS-CoV-2, allowing for efficient virus rescue. CONCLUSIONS: The herein described optimized CPER system may facilitate research studies to assess the contribution of SARS-CoV-2 genes and individual motifs or residues to virus replication, pathogenesis and immune escape, and may also be adapted to other viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Virus Replication , Nucleotidyltransferases
5.
EBioMedicine ; 91: 104561, 2023 May.
Article in English | MEDLINE | ID: covidwho-2295239

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS: We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS: S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION: Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING: A full list of funding bodies that contributed to this study can be found under Acknowledgments.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Virulence/genetics , Membrane Fusion
6.
Front Microbiol ; 14: 1141101, 2023.
Article in English | MEDLINE | ID: covidwho-2292888

ABSTRACT

Introduction: Reverse genetics has become an indispensable tool to gain insight into the pathogenesis of viruses and the development of vaccines. The yeast-based synthetic genomics platform has demonstrated the novel capabilities to genetically reconstruct different viruses. Methods: In this study, a transformation-associated recombination (TAR) system in yeast was used to rapidly rescue different strains of feline infectious peritonitis virus, which causes a deadly disease of cats for which there is no effective vaccine. Results and discussion: Using this system, the viruses could be rescued rapidly and stably without multiple cloning steps. Considering its speed and ease of manipulation in virus genome assembly, the reverse genetics system developed in this study will facilitate the research of the feline coronaviruses pathogenetic mechanism and the vaccine development.

7.
Vet Microbiol ; 280: 109727, 2023 May.
Article in English | MEDLINE | ID: covidwho-2297087

ABSTRACT

Our previous study revealed that tissue culture-adapted porcine epidemic diarrhea virus (PEDV) strains, namely KNU-141112-S DEL2/ORF3 and -S DEL5/ORF3, were attenuated to different extents in vivo, suggesting that their independent deletion (DEL) signatures, including 2-amino acid (aa; residues 56-57) or 5-aa (residues 56-60) DEL in the N-terminal domain (NTD) of the spike (S) protein, may contribute to the reduced virulence of each strain. To investigate whether each DEL in the NTD of the S1 subunit is a determinant for the virulence of PEDV, we generated two mutant viruses, named icS DEL2 and icS DEL5, by introducing the identical double or quintuple aa DEL into S1 using reverse genetics with an infectious cDNA clone of KNU-141112 (icKNU-141112). We then orally inoculated conventional suckling piglets with icKNU-141112, icS DEL2, or icS DEL5 to compare their pathogenicities. The virulence of both DEL mutant viruses was significantly diminished compared to that of icKNU-141112, which causes severe clinical signs and 100 % mortality. Interestingly, the degree of attenuation differed between the two mutant viruses: icS DEL5 caused neither diarrhea nor mortality, whereas icS DEL2 caused mild to moderate diarrhea, higher viral titers in feces and intestinal tissues, and 25 % mortality. Furthermore, the icS DEL5-infected piglets displayed no remarkable macroscopic and microscopic intestinal lesions, while the icS DEL2-infected piglets showed histopathological changes in small intestine tissues, including moderate-to-severe villous atrophy. Our data indicate that the loss of the pentad (56GENQG60) residues in S alone can be sufficient to give rise to an attenuated phenotype of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Coronavirus Infections/veterinary , Spike Glycoprotein, Coronavirus/genetics , Diarrhea/veterinary
8.
Drug Delivery System ; 37(5):372-376, 2022.
Article in Japanese | EMBASE | ID: covidwho-2271309

ABSTRACT

The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

9.
Drug Delivery System ; 37(5):372-376, 2022.
Article in Japanese | EMBASE | ID: covidwho-2271308

ABSTRACT

The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

10.
Drug Delivery System ; 37(5):372-376, 2022.
Article in Japanese | EMBASE | ID: covidwho-2271307

ABSTRACT

The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

11.
Comput Struct Biotechnol J ; 19: 2508-2517, 2021.
Article in English | MEDLINE | ID: covidwho-2273517

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic that emerged in December 2019 in Wuhan city, China. An effective vaccine is urgently needed to protect humans and to mitigate the economic and societal impacts of the pandemic. Despite standard vaccine development usually requiring an extensive process and taking several years to complete all clinical phases, there are currently 184 vaccine candidates in pre-clinical testing and another 88 vaccine candidates in clinical phases based on different vaccine platforms as of April 13, 2021. Moreover, three vaccine candidates have recently been granted an Emergency Use Authorization by the United States Food and Drug Administration (for Pfizer/BioNtech, Moderna mRNA vaccines, and Johnson and Johnson viral vector vaccine) and by the UK government (for University of Oxford/AstraZeneca viral vector vaccine). Here we aim to briefly address the current advances in reverse genetics system of SARS-CoV-2 and the use of this in development of SARS-CoV-2 vaccines. Additionally, we cover the essential points concerning the different platforms of current SARS-CoV-2 vaccine candidates and the advantages and drawbacks of these platforms. We also assess recommendations for controlling the COVID-19 pandemic and future pandemics using the benefits of genetic engineering technology to design effective vaccines against emerging and re-emerging viral diseases with zoonotic and/or pandemic potential.

12.
Influenza Other Respir Viruses ; 17(3): e13109, 2023 03.
Article in English | MEDLINE | ID: covidwho-2259784

ABSTRACT

Background: Reverse genetics systems to rescue viruses from modified DNA are useful tools to investigate the molecular mechanisms of viruses. The COVID-19 pandemic prompted the development of several reverse genetics systems for SARS-CoV-2. The circular polymerase extension reaction (CPER) method enables the rapid generation of recombinant SARS-CoV-2; however, such PCR-based approaches could introduce unwanted mutations due to PCR errors. Methods: To compare the accuracy of CPER and a classic reverse genetics method using bacterial artificial chromosome (BAC), SARS-CoV-2 Wuhan/Hu-1/2019 was generated five times using BAC and five times using CPER. These 10 independent virus stocks were then deep sequencing, and the number of substitutions for which the frequency was greater than 10% was counted. Results: No nucleotide substitutions with a frequency of greater than 10% were observed in all five independent virus stocks generated by the BAC method. In contrast, three to five unwanted nucleotide substitutions with a frequency of more than 10% were detected in four of the five virus stocks generated by the CPER. Furthermore, four substitutions with frequencies greater than 20% were generated in three virus stocks by using the CPER. Conclusions: We found that the accuracy of the CPER method is lower than that of the BAC method. Our findings suggest care should be used when employing the CPER method.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Chromosomes, Artificial, Bacterial/genetics , Pandemics , Reverse Genetics/methods
13.
Microbiol Spectr ; : e0338522, 2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2266372

ABSTRACT

The appearance of SARS-CoV-2 variants in late 2020 raised alarming global public health concerns. Despite continued scientific progress, the genetic profiles of these variants bring changes in viral properties that threaten vaccine efficacy. Thus, it is critically important to investigate the biologic profiles and significance of these evolving variants. In this study, we demonstrate the application of circular polymerase extension cloning (CPEC) to the generation of full-length clones of SARS-CoV-2. We report that, combined with a specific primer design scheme, this yields a simpler, uncomplicated, and versatile approach for engineering SARS-CoV-2 variants with high viral recovery efficiency. This new strategy for genomic engineering of SARS-CoV-2 variants was implemented and evaluated for its efficiency in generating point mutations (K417N, L452R, E484K, N501Y, D614G, P681H, P681R, Δ69-70, Δ157-158, E484K+N501Y, and Ins-38F) and multiple mutations (N501Y/D614G and E484K/N501Y/D614G), as well as a large truncation (ΔORF7A) and insertion (GFP). The application of CPEC to mutagenesis also allows the inclusion of a confirmatory step prior to assembly and transfection. This method could be of value in the molecular characterization of emerging SARS-CoV-2 variants as well as the development and testing of vaccines, therapeutic antibodies, and antivirals. IMPORTANCE Since the first emergence of the SARS-CoV-2 variant in late 2020, novel variants have been continuously introduced to the human population, causing severe public health threats. In general, because these variants acquire new genetic mutation/s, it is critical to analyze the biological function of viruses that such mutations can confer. Therefore, we devised a method that can construct SARS-CoV-2 infectious clones and their variants rapidly and efficiently. The method was developed based on a PCR-based circular polymerase extension cloning (CPEC) combined with a specific primer design scheme. The efficiency of the newly designed method was evaluated by generating SARS-CoV-2 variants with single point mutations, multiple point mutations, and a large truncation and insertion. This method could be of value for the molecular characterization of emerging SARS-CoV-2 variants and the development and testing of vaccines and antiviral agents.

14.
Microbiol Spectr ; 11(1): e0387222, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2239688

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets, with high mortality rates. To prevent or mitigate the disease, it is common practice to develop live or inactivated PEDV vaccines based on cell-adapted viral variants. Propagating wild-type PEDV in cultured cells is, however, often challenging due to the lack of knowledge about the requirements for the cell adaptation of PEDV. In the present study, by using the RNA-targeted reverse genetic system for PEDV to apply S protein swapping followed by the rescue of the recombinant viruses, three key amino acid mutations in the S protein, A605E, E633Q, and R891G, were identified, which enable attenuated PEDV strain DR13 (DR13att) to efficiently and productively infect Vero cells, in contrast to the parental DR13 strain (DR13par). The former two key mutations reside inside and in the vicinity of the receptor binding domain (RBD), respectively, while the latter occurs at the N-terminal end of the fusion peptide (FP). Besides the three key mutations, other mutations in the S protein further enhanced the infection efficiency of the recombinant viruses. We hypothesize that the three mutations changed PEDV tropism by altering the S2' cleavage site and the RBD structure. This study provides basic molecular insight into cell adaptation by PEDV, which is also relevant for vaccine design. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a lethal pathogen for newborn piglets, and an efficient vaccine is needed urgently. However, propagating wild-type PEDV in cultured cells for vaccine development is still challenging due to the lack of knowledge about the mechanism of the cell adaptation of PEDV. In this study, we found that three amino acid mutations, A605E, E633Q, and R891G, in the spike protein of the Vero cell-adapted PEDV strain DR13att were critical for its cell adaptation. After analyzing the mutation sites in the spike protein, we hypothesize that the cell adaptation of DR13att was achieved by altering the S2' cleavage site and the RBD structure. This study provides new molecular insight into the mechanism of PEDV culture adaptation and new strategies for PEDV vaccine design.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Porcine epidemic diarrhea virus/genetics , Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Coronavirus Infections/veterinary , Coronavirus Infections/genetics , Swine Diseases/prevention & control
15.
J Med Virol ; : e28326, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2233994

ABSTRACT

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.

16.
Microbiol Immunol ; 67(4): 204-209, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2192137

ABSTRACT

Bovine parainfluenza virus type 3 (BPIV3) is a promising vaccine vector against various respiratory virus infections, including the human PIV3, respiratory syncytial virus, and severe acute respiratory syndrome-coronavirus 2 infections. In this study, we combined the Magnet system and reverse genetic approach to generate photocontrollable BPIV3. An optically controllable Magnet gene was inserted into the H2 region of the BPIV3 large protein gene, which encodes an RNA-dependent RNA polymerase. The generated photocontrollable BPIV3 grew in specific regions of the cell sheet only when illuminated with blue light, suggesting that spatiotemporal control can aid in safe clinical applications of BPIV3.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Animals , Cattle , Humans , Parainfluenza Virus 3, Human/genetics , Cell Line , Virus Replication , Parainfluenza Virus 3, Bovine/genetics
17.
Springer Protocols Handbooks ; : 73-90, 2022.
Article in English | EMBASE | ID: covidwho-2173504

ABSTRACT

For decades, the genetic modification of coronavirus genomes and the generation of recombinant coronaviruses have been hampered mostly due to the extraordinary large size of the coronaviral genome. The very first reverse genetic system for feline coronaviruses (FCoVs) was established in the early 2000s;the respective approach exclusively enabled the manipulation of the 3'-third of the viral genome. Later on, vaccinia virus-and bacterial artificial chromosome (BAC)-based systems have been developed. Both systems have the advantage that the entire FCoV genome is amenable for mutagenesis. The main focus of this chapter is the vaccinia virus-based reverse genetic system for FCoVs. Here we present protocols for (1) the generation of a full-length cDNA clone, (2) the manipulation of the FCoV genome, and (3) the rescue of recombinant FCoVs. Copyright © Springer Science+Business Media New York 2016.

18.
Springer Protocols Handbooks ; : 53-72, 2022.
Article in English | EMBASE | ID: covidwho-2173503

ABSTRACT

We have developed a reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) in which a full-length cDNA corresponding to the IBV genome is inserted into the vaccinia virus genome under the control of a T7 promoter sequence. Vaccinia virus as a vector for the full-length IBV cDNA has the advantage that modifications can be introduced into the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. Here, we describe the use of transient dominant selection as a method for introducing modifications into the IBV cDNA;that has been successfully used for the substitution of specific nucleotides, deletion of genomic regions, and the exchange of complete genes. Infectious recombinant IBVs are generated in situ following the transfection of vaccinia virus DNA, containing the modified IBV cDNA, into cells infected with a recombinant fowlpox virus expressing T7 DNA dependant RNA polymerase. Copyright © Springer Science+Business Media New York 2016.

19.
Springer Protocols Handbooks ; : 3-11, 2022.
Article in English | EMBASE | ID: covidwho-2173499

ABSTRACT

Coronaviruses (CoVs) are single-stranded positive-sense enveloped RNA viruses. Among RNA viruses, CoVs have the largest genome. CoVs infect diverse animal species including domestic and wild animals. In this chapter, we provide a brief review on animal CoVs by discussing their receptor, host specificity, reverse genetics, and emerging and re-emerging porcine CoVs. Copyright © Springer Science+Business Media New York 2016.

20.
Viruses ; 14(12)2022 11 30.
Article in English | MEDLINE | ID: covidwho-2143722

ABSTRACT

Experimental work with viruses that are highly pathogenic for humans and animals requires specialized Biosafety Level 3 or 4 facilities. Such pathogens include some spectacular but also rather seldomly studied examples such as Ebola virus (requiring BSL-4), more wide-spread and commonly studied viruses such as HIV, and the most recent example, SARS-CoV-2, which causes COVID-19. A common characteristic of these virus examples is that their genomes consist of single-stranded RNA, which requires the conversion of their genomes into a DNA copy for easy manipulation; this can be performed to study the viral life cycle in detail, develop novel therapies and vaccines, and monitor the disease course over time for chronic virus infections. We summarize the recent advances in such new genetic applications for RNA viruses in Switzerland over the last 25 years, from the early days of the HIV/AIDS epidemic to the most recent developments in research on the SARS-CoV-2 coronavirus. We highlight game-changing collaborative efforts between clinical and molecular disciplines in HIV research on the path to optimal clinical disease management. Moreover, we summarize how the modern technical evolution enabled the molecular studies of emerging RNA viruses, confirming that Switzerland is at the forefront of SARS-CoV-2 research and potentially other newly emerging viruses.


Subject(s)
COVID-19 , HIV Infections , RNA Viruses , Animals , Humans , SARS-CoV-2/genetics , RNA Viruses/genetics , Molecular Biology
SELECTION OF CITATIONS
SEARCH DETAIL